The third row is always assumed to be [0, 0, 1].
Matrix2D uses the following form, as per the whatwg.org specifications for canvas.transform(): [a, c, e] [b, d, f] [0, 0, 1]
public {Matrix2D} new Matrix2D();
public {Matrix2D} new Matrix2D(Matrix2D);
public {Matrix2D} new Matrix2D(Number, Number, Number, Number, Number, Number);
Applies the matrix transformations to the passed object
public {Vector2D} apply(Vector2D);
Multiplies this matrix with another, overriding the values of this matrix. The passed matrix is assumed to be on the right-hand side.
public {Matrix2D} combine(Matrix2D);
Checks for the numeric equality of this matrix versus another.
public {Boolean} equals(Matrix2D);
Returns true if this matrix is the identity matrix
public {Boolean} isIdentity();
Determines is this matrix is invertible.
public {Boolean} isInvertible();
Applies a counter-clockwise pre-rotation to this matrix
public {Matrix2D} preRotate(Number);
Applies a pre-scaling to this matrix
public {Matrix2D} preScale(Number[, Number]);
Applies a pre-translation to this matrix
public {Matrix2D} preTranslate(Vector2D);
public {Matrix2D} preTranslate(Number, Number);
Applies a counter-clockwise post-rotation to this matrix
public {Matrix2D} rotate(Number);
Applies a post-scaling to this matrix
public {Matrix2D} scale(Number[, Number]);
Sets the values of this matrix
public {Matrix2D} setValues(Matrix2D);
public {Matrix2D} setValues(Number, Number, Number, Number, Number, Number);
Applies a post-translation to this matrix
public {Matrix2D} translate(Vector2D);
public {Matrix2D} translate(Number, Number);